8,376 research outputs found

    Real-time cross-layer design for large-scale flood detection and attack trace-back mechanism in IEEE 802.11 wireless mesh networks

    Get PDF
    IEEE 802.11 WMN is an emerging next generation low-cost multi-hop wireless broadband provisioning technology. It has the capability of integrating wired and wireless networks such as LANs, IEEE 802.11 WLANs, IEEE 802.16 WMANs, and sensor networks. This kind of integration: large-scale coverage, decentralised and multi-hop architecture, multi-radios, multi-channel assignments, ad hoc connectivity support the maximum freedom of users to join or leave the network from anywhere and at anytime has made the situation far more complex. As a result broadband resources are exposed to various kinds of security attacks, particularly DoS attacks

    Denial of service attacks and challenges in broadband wireless networks

    Get PDF
    Broadband wireless networks are providing internet and related services to end users. The three most important broadband wireless technologies are IEEE 802.11, IEEE 802.16, and Wireless Mesh Network (WMN). Security attacks and vulnerabilities vary amongst these broadband wireless networks because of differences in topologies, network operations and physical setups. Amongst the various security risks, Denial of Service (DoS) attack is the most severe security threat, as DoS can compromise the availability and integrity of broadband wireless network. In this paper, we present DoS attack issues in broadband wireless networks, along with possible defenses and future directions

    Generation of density inhomogeneities by magnetohydrodynamic waves in two dimensions

    Full text link
    Using two dimensional simulations, we study the formation of structures with a high-density contrast by magnetohydrodynamic waves in regions in which the ratio of thermal to magnetic pressure is small. The initial state is a uniform background perturbed by fast-mode wave. Our most significant result is that dense structures persist for far longer in a two-dimensional simulation than in the one-dimensional case. Once formed, these structures persist as long as the fast-mode amplitude remains high.Comment: 6 pages, 7 figures, accepted by MNRA

    Low energy proton radiation damage to (AlGa)As-GaAs solar cells

    Get PDF
    Twenty-seven 2 times 2 sq cm (AlGa)As-GaAs solar cells were fabricated and subjected to 50 keV, 100 keV, and 290 keV of proton irradiation along with eighteen high efficiency silicon solar cells. The results of the study further corroborate the advantages for space missions offered by GaAs cells over state of the art silicon cells. Thus, even though the GaAs cells showed greater degradation when irradiated by protons with energy less than 5 MeV, the solar cells were normally protected from these protons by the glass covers used in space arrays. The GaAs cells also offered superior end of life power capability compared with silicon. The change in the open circuit voltage, short circuit current, spectral response, and dark 1-5 characteristics after irradiation at each proton energy and fluence were found to be consistent with the explanation of the effect of the protons. Also dark 1-5 characteristics showed that a new recombination center dominates the current transport mechanism after irradiation

    Electron Radiation Damage of (alga) As-gaas Solar Cells

    Get PDF
    Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described

    (BIOLOGICAL) LIFE: THE PEDAGOGY OF AN ARCHITECTURAL CONCEPT

    Full text link
    This paper analyses the techniques and technologies mobilized under the imprimatur of biological life in architectural production beyond their manifestations as (bio)mimetic processes. The arguments do not take ‘life’ as a priori to architectural thinking, but as immanent to each enactment of technique or application of technology within the biological paradigm. Using the work of Roger Caillois on pyschasthenia as the collapse of space between an organism and its milieu, the analysis avoids elevating biological life to a transcendent concept. Biological life in architecture instigates the pragmatic concern for whether a philosophical or scientific concept works, or matters, regardless of whether it fits within an ontology or metaphysics. Thus, architectural production using biological life subscribes to a Deleuzo-Guattarian “pedagogy of a concept” – the creation of perceptual and affective habits that are self-jeopardising and highly idiosyncratic to ensure further concept formation

    Understanding and strategizing vocational teaching

    Get PDF
    Brian Simon in 1981 asked a seemingly simple question, Why no pedagogy in England? This article seeks to answer it by using a theoretical framework and empirical findings from deliverers/lecturers with occupational practices ranging from industries such as airline and equine studies, fashion and textiles, and gas fitting/servicing (Loo, 2018). The larger project also draws from higher vocational/first degree and professional education
    • 

    corecore